Monday	Tuesday	Wednesday
$\frac{1}{6} 0 \frac{1}{2}$	$\div 0 \div$	$\stackrel{1}{10}$
$\frac{1}{9} \bigcirc \frac{1}{4}$	$\div 0 \div$	$\frac{5}{8} \bigcirc \frac{1}{8}$
$\frac{1}{2} \bigcirc \frac{1}{10}$	$\frac{10}{10} \mathrm{O} \frac{1}{10}$	$\frac{1}{2} \bigcirc \frac{1}{4}$
$\frac{1}{3} \bigcirc \frac{1}{6}$	$\frac{3}{5} 0 \frac{\frac{3}{5}}{}$	- $\frac{1}{5}$
$\frac{1}{12} \bigcirc \frac{1}{4}$	$\div \bigcirc \frac{2}{6}$	${ }^{\frac{3}{6}} \bigcirc \bigcirc \frac{5}{6}$
$\frac{1}{9} \bigcirc \frac{1}{10}$	$\frac{2}{3} \mathrm{O} \frac{1}{3}$	$\frac{1}{6} \bigcirc \frac{1}{12}$
${ }^{\frac{1}{20}} \mathrm{O}$ O $\frac{1}{2}$	$\div 0 \div$	${ }_{\frac{2}{7}} \bigcirc^{1}{ }^{4}$
${ }^{1} \mathrm{O} \mathrm{O}_{\frac{1}{3}}$	${ }^{\frac{4}{5}} \mathrm{O}$	O
$\frac{1}{6} \bigcirc \frac{1}{10}$	$\bigcirc \frac{5}{8}$	${ }^{\frac{1}{3}} \bigcirc \bigcirc \bigcirc \frac{1}{1}$
$\frac{1}{12} \bigcirc \frac{1}{9}$	${ }^{\frac{3}{6}} \mathrm{O}$	$\frac{1}{4} \bigcirc \frac{10}{20}$

Wednesday (Part 2)

What fraction could go in the missing box? How many can you find?

I know that $\frac{1}{3}$ is larger than $\frac{1}{2}$ because 3 is bigger than 2

Do you agree with Sally? Explain how you know.

Using the fraction strips below, use the >, < or = symbol to compare the fractions.

When the numerators are the same, the \qquad the denominator, the \qquad the fraction.

Mohammed says, "When I compare fractions with the same denominator, I look at the numerator."

Discuss with a partner how Mohammed is correct. Is there anything else he needs to say?

Write your own instructions for comparing fractions with the same denominator, and show an example.

